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Madrid, Carretera de Valencia Km. 7, 28031 Madrid, Spain
2 Landau Institute for Theoretical Physics, RAS, Moscow 117 334, Russia

E-mail: rafahh@euitt.upm.es, shabat@itp.ac.ru and sokolov@itp.ac.ru

Received 23 June 2003
Published 12 November 2003
Online at stacks.iop.org/JPhysA/36/L605

Abstract
Using the symmetry approach, we find a class of integrable nonlinear PDEs
with dispersion law ω(k) = k

3
2 . All these equations turn out to be linearizable

by means of a differential parametrization.

PACS number: 02.30.Jr

1. Introduction

In this paper we consider integrable equations of the form

qtt = qxxx + F(q, qx, qt , qxx, qxt ). (1)

These equations possess an unusual dispersion law ω(k) = k
3
2 . Moreover, one can prove

that for such equations there are no higher conserved densities, and therefore they are non-
Hamiltonian.

The first example of such equations

qtt = qxxx + 3qxqxt +
(
qt − 3q2

x

)
qxx (2)

has been found in [1] (see also [12]). Some particular solutions of (2) feature moving branch-
point singularities. For instance, the simplest self-similar solutions of the form q = q(x + kt)

satisfy the ODE

y ′ = y(y − k)2 + const

where qx = y. It is obvious that they have singularities of such type. This is in contradiction
with the Painlevé test [4], an integrability criterion that asserts, roughly speaking, that
integrable equations do not have solutions with such singularities.

Nevertheless, equation (2) possesses a degenerate Lax representation, implying the
existence of infinitely many higher symmetries and corresponding invariant solutions [1].

0305-4470/03/470605+10$30.00 © 2003 IOP Publishing Ltd Printed in the UK L605

http://stacks.iop.org/ja/36/L605


L606 Letter to the Editor

Three examples of higher symmetries are

qt1 = qxx + 2qxqt − q3
x

qt2 = qxt + qxqxx + q2
t + q2

xqt − q4
x

qt3 = qtt + 3qxq
2
t + 2qxxqt − 2q3

xqt .

The whole hierarchy of symmetries can be reproduced by a recursion operator

R0 = −qx + 2D−1qxx + D−1Dt = A + BDt (3)

acting on the seed symmetries qx and qt . Since the properties of equation (2) seem to be rather
unusual for standard integrable models, we decided to investigate in detail the whole class (1).
The main goal of the paper is to find all equations in this class possessing higher symmetries,
and to understand in what sense such equations are integrable.

In section 2 we generalize the main concepts of the symmetry approach [12], such as the
formal recursion operator and canonical conserved densities, for the case of non-evolutionary
equations of the form

qtt = F(q, q1, q2, . . . , qn, qt , qt1, qt2, . . . , qtm). (4)

Equations of this type were excluded from consideration in works [2, 3, 5], where only
evolution equations were investigated. Obviously, any equation (4) can be rewritten as a
system of two evolution equations. For example, equation (2) is equivalent to

ut = (vx + uv)x vt = (u + v2)x

where v = qx . However, the matrix coefficients of the leading derivatives of such systems
have the structure of a Jordan block, whereas in papers [6–8], devoted to systems of evolution
equations, the leading matrix was supposed to be diagonalizable. The standard method of
deriving necessary integrability conditions based on the residues of fractional powers of formal
recursion operator [12] does not work for such equations, and it has been necessary to develop
a generalization of the methods of the symmetry approach. A new definition of the canonical
densities proposed in this paper was inspired by the work [14]. Using these canonical densities,
we find all equations (1) possessing infinitely many higher symmetries. It turns out (see
section 3) that all these equations are related to second-order evolution equations

ut = H(x, u, ux, uxx) (5)

having higher symmetries. It was shown by Svinolupov [9] that any equation (5) can be
reduced to one of the following equations:

ut = uxx + f (x)u

ut = uxx + 2uux + g(x)

ut =
(ux

u2
+ λx

)
x

ut =
(ux

u2
+ λ1xu + λ2u

)
x

by a contact (or point) transformation

x̄ = φ(x, u, ux) ū = ψ(x, u, ux) (6)

where
∂φ

∂ux

(
∂ψ

∂u
ux +

∂ψ

∂x

)
= ∂ψ

∂ux

(
∂φ

∂u
ux +

∂φ

∂x

)
.
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All these equations can be linearized by simple differential substitutions (see [9]).
In section 3 we show that all equations (1) from our list admit a parametrization of the

form

qx = K(q, qy, qyy) qt = S(q, qy, qyy, qyyy) (7)

where qx = K is a linearizable equation of second order, and qt = S is a higher symmetry of
this latter equation. For example, the parametrization (7) of equation (2) is given by

qx = qyy

q2
y

qt = −qyyy

q3
y

+ 3
q2

yy

q4
y

.

Any common solution q(x, t, y) of system (7) gives a one-parameter family of solutions
of the integrable equation (1). However, the general solution of (7) depends on one function
q0(y) = q(0, 0, y) of one variable, whereas the general solution of (1) depends on two
functions of one variable.

Although a general idea of such parametrization is contained in [1, 11], explicit formulae
for the linearization of equation (2) were first obtained by Adler [10].

2. Classification of third-order equations

2.1. Integrability conditions

For equation (4), all the mixed derivatives of q containing at least two time derivatives can be
expressed in terms of

q, qx, qxx, . . . , qi, . . . qt , qt1 = qtx, qt2 = qtxx, . . . , qti , . . . (8)

in virtue of (4). The derivatives (8) will be regarded as independent variables.
An equation

qτ = G(q, q1, q2, . . . , qr , qt , qt1, qt2, . . . , qts) (9)

compatible with (4) is called infinitesimal (local) symmetry of (4). Compatibility implies that
the function G satisfies the equation F(G) = 0, where

F = D2
t −

n∑
i=0

∂F

∂qi

Di
x −

(
m∑

i=0

∂F

∂qti

Di
x

)
Dt

def= D2
t − (M + NDt) (10)

is the linearization operator for equation (4).
In order to rewrite the consistency conditions of (4) and (9) in terms of a series of

conservation laws

(ρi)t = (σi)x (11)

for (4), one can use a formal Lax representation of the problem. The linearization of equations
(4) and (9) gives rise to the compatibility problem for linear equations

φtt = (M + NDt)φ φτ = (A + BDt)φ

or, equivalently,

	t = F∗	 	τ = G∗	 	 =
(

φ

φt

)
F∗ =

(
0 1
M N

)
where

G∗ =
(

A B

Â B̂

)
Â

def= At + BM B̂
def= Bt + BN + A. (12)
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Cross differentiation yields

Dt(G∗) = [F∗,G∗] + Dτ(F∗) (13)

where F∗,G∗ are matrix differential operators. The crucial step in the symmetry approach
(see [3, 6, 12] and references there) is to consider instead of equation (13), the equation

Dt(R) = [F∗, R] (14)

where R is matrix pseudo-differential operator. We call R a matrix formal recursion operator.
Denoting as before R11 = A,R12 = B we can rewrite (14) as

Att − NAt + [A,M] + (2Bt + [B,N])M + BMt = 0 (15)

Btt + 2At + [B,M] + [A,N ] + ([B,N] + 2Bt)N + BNt − NBt = 0. (16)

If R1, R2 are formal matrix recursion operators, then R3 = R1R2 is also a formal recursion
operator, and we find using (12) that

A3 = A1A2 + B1B2M + B1A2,t B3 = A1B2 + B1A2 + B1B2N + B1B2,t . (17)

The identities (15) and (16) mean that the scalar pseudo-differential operatorR = A+BDt

is related to (10), the linearization F of equation (4), by

F(A + BDt) = (Ā + BDt)F (18)

where Ā = A + 2Bt + [B,N]. A pseudo-differential operator R = A + BDt , with components

A =
n∑

−∞
aiD

i
x B =

m∑
−∞

biD
i
x

satisfying (15) and (16), is called scalar formal recursion operator for equation (4). If A and
B are differential operators (or ratios of differential operators), condition (18) implies that the
operator R maps symmetries of equation (4) again to symmetries. However, we are using the
notion of formal recursion operator with a completely different aim.

Let R1 = A1 + B1Dt and R2 = A2 + B2Dt be two scalar formal recursion operators.
Then the product R3 = R1R2, in which D2

t is replaced by (M + NDt), is also a scalar formal
recursion operator, with components given by (17).

An operator S = P + QDt is said to be implectic if

F∗S + S̄F = 0 S̄ = P̄ + Q̄Dt .

Here and in what follows the superscript ‘∗’ denotes the adjoint operator. If S can be applied
to symmetries, then it maps symmetries to cosymmetries. In the symmetry approach P and Q
are supposed to be formal non-commutative series with respect to Dx .

The operator equations for the components of the formal implectic operator S = P +QDt

have the following form:

Ptt + N∗Pt + 2QtM + QMt = M∗P − PM − (QN + N∗Q)M − N∗
t P (19)

Qtt + 2Pt + 2QtN + N∗Qt = M∗Q − QM − (QN + N∗Q)N

−PN − N∗P − (N∗
t Q + QNt). (20)

The linearization P + QDt of the variational derivative of a conserved density for equation (4)
satisfies equations (19) and (20) up to a ‘small’ rest (see [13]).

Let us consider equations of form (1). It follows from formulae (19) and (20) that
equation (1) has no higher conservation laws. Moreover, it is easy to prove that the density of
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any conservation law, up to total derivatives, is of the form

ρ = r1(q, qx)qt + r2(q, qx).

All statements presented below can be easily reformulated for general equations of
type (4).

Theorem 1. If equation (1) possesses an infinite sequence of higher symmetries of the form

qτi
= Gi

(
q, q1, q2, . . . , qri

, qt , qt1, qt2, . . . , qtsi

)
(21)

then there exists a formal recursion operator of the form

R = (a0 + a−1D
−1 + · · ·) + (D−1 + b−2D

−2 + · · ·)Dt (22)

where ai, bi are some functions of the variables (8).

For scalar evolution equations one can use (see [3, 6, 12]) the residues of powers of the
formal recursion operator to derive the canonical conservation laws (11). Unfortunately, for
equations (1) this technique does not work, and we present a different way (cf [14]) to get
necessary integrability conditions (11).

Let R be a formal recursion operator of form (22). It is then possible to find an operator

R−1 = (α−1D
−1 + α−2D

−2 · · ·) + (D−2 + β−3D
−3 + · · ·)Dt (23)

such that RR−1 = R−1R = 1. Recall that we eliminate D2
t in virtue of F = 0 in the product

of scalar recursion operators. The operator R−1 is uniquely defined.

Theorem 2. If R is a formal recursion operator of form (22) for equation (1), then there is a
unique representation of the total derivative operators Dx and Dt of the form

Dx =
2∑

−∞
ρiRi Dt =

3∑
−∞

σiRi . (24)

Functions ρi and σi are densities and fluxes of some (maybe trivial) conservation laws (11)
for equation (1).

The following formulae define five integrability conditions (11) for equations (1):

ρ1 = ∂F

∂qxt

ρ2 = ∂F

∂qxx

+
2

3
σ1

ρ3 = 6σ2 − ∂F

∂qxt

σ1 + 9
∂F

∂qt

− 3
∂F

∂qxt

∂F

∂qxx

− 1

3

∂F

∂q

3

xt

ρ4 = 6σ3 − 9
∂F

∂qxt

σ2 + 3σ 2
1 + 27

∂F

∂qt

∂F

∂qxt

− ∂F

∂q

4

xt

+ 81
∂F

∂qx

− 9
∂F

∂q

2

xt

∂F

∂qxx

− 27
∂F

∂q

2

xx

ρ5 = 2σ4 + 18σ1σ2 − 27(σ1)t − 3σ 2
1

∂F

∂qxt

− 3σ3
∂F

∂qxt

− 9σ1
∂F

∂qxt

∂F

∂qxx

− σ1
∂F

∂q

3

xt

+ 27σ1
∂F

∂qt

.

The conditions mean that ρi are densities of local conservation laws for equation (1). In other
words, for any ρi there exists a corresponding function σi depending on the variables (8).
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2.2. List of integrable equations

Lemma. If equation (1) satisfies conditions (11) with i = 1, 2, 3, 4, then it is of the form

qtt = qxxx + (A1qt + A2)qxt + A3q
2
xx +

(
A4q

2
t + A5qt + A6

)
qxx

+ A7q
4
t + A8q

3
t + A9q

2
t + A10qt + A11 (25)

where the functions Ai depend on q and qx only.

It is easy to verify that the class of equations (25) is invariant with respect to point
transformations q → ϕ(q). Moreover, if all functions Ai do not depend on q, then shifts of
the form q → q + λ1x + λ2t, where λi are arbitrary constants, are also allowed.

Theorem 3. Up to the transformations described above, any nonlinear equation (1) satisfying
integrability conditions with i = 1, 2, . . . , 7, coincides with the equation

qtt = qxxx + (3qx + k)qxt +
(
qt − 3q2

x − 2kqx + 6℘
)
qxx − 2℘ ′qt + 6℘ ′q2

x + (℘ ′′ + k℘ ′)qx

(26)

where ℘(q) is any solution of an equation of the form

℘ ′2 = 8℘3 + k2℘2 + c1℘ + c0 (27)

or with the equation

qtt = qxxx +

(
3qt

qx

+
3

2
X(q)

)
qxt − 1

qx

q2
xx −

(
2q2

t

q2
x

+
3qt

2qx

X(q)

)
qxx

+ c2

(
qxqt +

3

2
q2

xX(q)

)
(28)

where X(q) = c2q + c1 and ci are arbitrary constants.

Remark. Actually, any equation (28) can be reduced to the equation with X(q) = const
or to the equation with X(q) = q. The integrability conditions (6) and (7) have quite long
expressions and we do not present them in this paper. We have only used these conditions to
prove that any equation (1) for which all conservation laws (11) are trivial, is equivalent to a
linear one.

2.3. Recursion operators

In this section we present a closed form for recursion operators of the models (26) and (28).
The existence of these recursion operators implies the fact that all the integrability conditions
with i � 1 are fulfilled for these equations.

Let us consider equation (26). This equation has only one non-trivial conserved density,
given by

ρ = qt − q2
x + 2℘(q). (29)

The simplest higher symmetries of (26) are

qτ = qxx + 2qxqt − q3
x − kq2

x + 4℘qx

and

qτ = qxt + qxqxx + q2
t +

(
q2

x + 2℘
)
qt − q4

x − kq3
x + 6℘q2

x + (℘ ′ + k℘)qx.

They are generated by the following recursion operator:

R = D +
(
qt − 2q2

x − kqx + 2℘
)

+ qxD
−1(Dt + 2qxx + 2℘ ′)
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acting on the seed symmetries qx and qt . A direct calculation shows that this recursion operator
satisfies (15) and (16). In the degenerate case ℘ ≡ 0, k = 0 we have R = R2

0, where R0

is defined by (3). The operator Dt + 2qxx + 2℘ ′ corresponds to the variational derivative of
function (29) and, therefore, if we apply R to any local symmetry admitting the conservation
law with density (29), the result should be local.

Another recursion operator for (26) has the form

S = Dt +
(
qxx − q3

x − kq2
x + 6℘qx + k℘ + ℘ ′) + qtD

−1(Dt + 2qxx + 2℘ ′).

One can verify that

S2 = R3 − kRS − c1

2
R − c0.

For equation (28), a recursion operator is given by

R =
(

qt

qx

+
1

2
X

)
− qxD

−1

(
1

qx

Dt +
qxt

q2
x

− 2qtqxx

q3
x

+
c2

2

)
.

The non-trivial conserved density for this equation is given by

ρ = qt

qx

+
1

2
X(q). (30)

In the case X(q) = 0, c1 = 0 the non-local variable Q = D−1
x (ρ) satisfies equation (2).

3. Linearization procedure

Both equations (26) and (28) have only one non-trivial conserved local density. The Burgers
equation ut = uxx + 2uux possesses the same property: Dt(u) = Dx(ux + u2) is the unique
conservation law of this equation. The crucial step in the linearization of the Burgers equation
is to introduce the potential W of this conservation law. By definition, the variable W satisfies
conditions Wx = u,Wt = ux + u2. It is easy to verify that the function U = exp (W) satisfies
the heat equation Ut = Uxx .

For equations (26) and (28) the potentials of conservation laws also play a key role in
linearization. However, the procedure of linearization is not so straightforward. To illustrate it,
let us consider the simplest version, X = 0, of equation (28). The potential of the conservation
law for this equation satisfies the conditions

Wx = qt

qx

Wt = qxx

qx

+
q2

t

q2
x

.

A simple computation shows that the equation admits the non-local symmetry qy = W . Since

Dy

(
qt

qx

)
= qxx

q2
x

we have

qyy = Wy = − 1

qx

qyyy = qt

q3
x

or

qx = − 1

qyy

qt = −qyyy

q3
yy

.

After the Legendre transformation

y = Uz q = U − zUz
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the latter pair of compatible equations becomes linear:

Ux = Uzz Ut = Uzzz.

For the more complicated equation

qtt = qxxx +
3qt

qx

qxt − 1

qx

q2
xx − 2q2

t

q2
x

qxx + c

(
qxt − qt

qx

qxx

)
(31)

which corresponds to the case X = const �= 0, the same linearization scheme works. The
potential is defined by

Wx = qt

qx

Wt = qxx

qx

+
q2

t

q2
x

+ c
qt

qx

and the non-local symmetry is given by qy = exp(−cW). It is not difficult to check that

qx = −c2
q2

y

qyy

qt = c3
q3

yqyyy − 2q2
yq

2
yy

q3
yy

.

After a contact transformation

y = 1
2 exp(−z)(Uz + U) q = 1

2 exp(z)(Uz − U)

these equations become

Ux = c2

2
(Uzz − U) Ut = c3

4
(Uzzz + Uzz − Uz − U).

The most non-trivial case is X = q. In this case the potential W is defined by

Wx = qt

qx

+
q

2
Wt = qxx

qx

+
q2

t

q2
x

+
3qt

2qx

q +
3

4
q2

but no non-local symmetries of the form qy = F(q,W) exist. However, there exists a new
non-local conservation law with potential Z defined by

Zx = q2 − 2Wqx Zt = − 1
2q3 − 2qx − 2Wqt .

Using these two potentials, we find a non-local symmetry qy = 2q exp
(−Z

4 − qW

2

)
.

Expressing qx and qt in terms of the y-derivative, we get

qx = − q3q2
y

4
(
qqyy − 2q2

y

) qt = q4q3
y

(
q2qyyy − 9qqyqyy + 12q3

y

)
8
(
qqyy − 2q2

y

)3 .

After the contact transformation y = z + U
Uz

, q = − Uz

U 2 we do not obtain linear equations but

Ux = 1

4
Dz

(
Uz

U 2

)
Ut = −1

8
Dz

(
Uzz

U 3
− 3U 2

z

U 4

)
.

To linearize this system one can introduce a potential Y such that Yz = U, Yx = Uz

4U 2 , and after
that make a point transformation Y ↔ z.

Equation (26) can be linearized as follows. It is easy to verify that it has a non-local
symmetry qy = A(q) exp(−W), where

Wx = qt − q2
x + 2℘ Wt = qxx − q3

x + qtqx + k
(
qt − q2

x + ℘
)

+ 6℘qx + ℘ ′ + w

and

B ′2 = B4 +
k2

2
B2 + 8wB + b0 B = −A′

A
+

k

2
.
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It can be checked that

qx = qyy

q2
y

+ 2B(q) (32)

qt = −qyyy

q3
y

+ 3
q2

yy

q4
y

+ 3
qyy

q2
y

B(q) +
k

2

(
qyy

q2
y

+ 2B(q)

)
− 3

2
(B ′(q) − B(q)2) − k2

8
. (33)

The function ℘ from equation (26) is given by

℘ = −1

4
B ′ +

1

4
B2 − k2

48
where the parameters of the elliptic functions ℘ and B are related by

c1 = k4 − 16b0

32
c0 = w2.

After a change of variables z = q, u = y, equations (32) and (33) take the following linear
form:

ux = uzz − 2B(z)uz

ut = −uzzz + 3B(z)uzz +
3

2
(B ′(z) − B(z)2)uz +

k

2
(uzz − 2B(z)uz) +

k2

8
uz.

We see that in all cases there exists a non-local symmetry qy = G, depending on the
potentials, such that qx and qt can be expressed in terms of y-derivatives by formulae (7).
Using this parametrization, one can construct particular solutions of equations (26) and (28).

A parametrization of such kind arises not only for linearizable equations, but also for
equations of KdV-type and associated linear spectral problems. For example, consider the
spectral problem

�xx = (λ3 + u1λ
2 + u2λ + u3)�. (34)

For a non-local symmetry of this linear equation one can take (see [1, 11])

�̄yy = λ

a2
�̄ �̄ = 1√

a
�.

Then

u1 = 1

4
a2

y − 1

2
aayy u2 = −a[log (a)]xy u3 = −axx

2a
+

3a2
x

4a2

where a(x, y) satisfies the Harry–Dym equation

ax = a3ayyy.

At least on the local level, the general solution of the latter equation depends on three arbitrary
functions a0(x) = a(x, 0), a1(x) = ay(x, 0), a2(x) = ayy(x, 0) of x, and therefore this
parametrization provides a generic potential in (34). Multi-phase solutions of the Harry–Dym
equation lead to special potentials of the spectral problem (34).
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